If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(3z^2)+z=0
a = 3; b = 1; c = 0;
Δ = b2-4ac
Δ = 12-4·3·0
Δ = 1
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1}=1$$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-1}{2*3}=\frac{-2}{6} =-1/3 $$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+1}{2*3}=\frac{0}{6} =0 $
| 5679675677565657675745863a4=6596468248549870698680457936708-708676457387 | | A2a=5 | | 2x^2+8x-1144=0 | | x/6=0.6 | | F(x)=-5x+19 | | 2(4x-6)+5=15 | | 2x+9+3+4x=90 | | 1/3(9-6x=x | | 2(x+9)=6 | | 3=5.29+16a | | 45n=168 | | 2^(2x)+2^4-12=0 | | 81x^2-63=0 | | 3x+76=5x+3 | | 13n+6n=97 | | -x/4+2=10 | | f/5-22=57 | | 2(x-5)+3x=-25 | | 2^3x=2^8-x | | 2(x+3)^2-1=19 | | 4x-20=x+20 | | 2x-13=3x-4 | | 16(w+9)=-16 | | 5.4+4.2-3.8x=0 | | 4x107÷2x104=x103 | | 48=15y-9y | | y/7-3=-2 | | 12n=17+-22n | | 2u=24 | | 3^-4x-5=(1/27)^2X+10 | | 2/3+1/6y=5/6y+1/3 | | -11-u/3=-2 |